Book Online or Call 1-855-SAUSALITO

Sign In  |  Register  |  About Sausalito  |  Contact Us

Sausalito, CA
September 01, 2020 1:41pm
7-Day Forecast | Traffic
  • Search Hotels in Sausalito

  • CHECK-IN:
  • CHECK-OUT:
  • ROOMS:

Imvax Presents Data Showing Mechanisms for Broad Immune Activation by IGV-001

- In vitro and in vivo studies indicate anti-tumor activity overcomes IL-6 via Th1 T cells -

Imvax, Inc., a clinical-stage biotechnology company developing personalized, whole tumor-derived immunotherapies, today presented data showing the mechanisms by which IGV-001 produces broad immune activation at the Society for Immunotherapy of Cancer (SITC) Annual Meeting. The data from in vitro and in vivo studies highlight the effects of IGV-001 on inducing both innate and adaptive immune responses to tumor cells and point to the potential mechanism behind observed clinical activity for IGV-001 in the treatment of glioblastoma.

“These exciting mechanistic data substantiate the anti-tumor effects we’ve observed in prior clinical trials of IGV-001. The insights reported here will inform our ongoing clinical development of IGV-001 for glioblastoma, a disease in great need of effective new treatments,” said John P. Furey, Chief Executive Officer. “Importantly, these studies also underscore the potential expansion of Imvax’s approach to a wide range of solid tumors and bolster our ongoing preclinical work in hepatocellular, ovarian, pancreatic, and other cancers.”

For these in vitro studies, IGV-001 was prepared with patient tumor cells. It was then co-cultured with patient-derived peripheral blood mononuclear cells (PBMCs) to evaluate activated and memory T cell subsets and responses. These studies found an elevated percentage of activated potentially anti-tumor CD4 and CD8 T cells as well as increased central and effector memory phenotypes in both T cell subsets compared to IMV-001-treated PBMC controls. Tumor cells treated with Insulin-like Growth Factor-1 Receptor antisense ‘IMV-001’ also released significantly more (p<0.01) ATP than untreated or sense oligonucleotide-treated controls, suggesting immunogenic cell death.

In vivo studies were performed on C57BL/6 albino mice. Biodiffusion chambers were loaded with either IMV-001 or a saline control, plus GL261-Luc cells, irradiated and implanted into the mice’s flanks for 48 hours, similar to the combination product dosed in investigator-initiated Phase 1 studies of IGV-001 and planned for dosing in the Company’s upcoming Phase 2 clinical trial (NCT04485949). GL261-Luc intracranial tumor challenge was conducted 28 days after chamber implantation. At the termination of the study, 58 days post–intracranial tumor challenge, 59% of IGV-001-treated mice were alive and continued to gain weight, whereas all mice in the control group died by day 24 (p<0.001). Additionally, IGV-001-treated mice with lower tumor burden had less circulating IL-6 (P<0.01), pointing to a means of quantifying IGV-001’s suppression of tumor growth. Finally, Elispot assays demonstrated that mice treated with IGV-001 showed enhanced T cell IFNγ responses to tumor cell antigens, compared to controls.

About Imvax, Inc.

Imvax is a clinical-stage biotechnology company with a unique platform technology focused on delivering personalized, whole tumor-derived immunotherapies across a range of solid tumors. Imvax’s portfolio includes several programs designed to stimulate a patient’s immune system against the entire antigen signature of their tumor. Imvax’s most advanced program is IGV-001 for the treatment of glioblastoma. Imvax is headquartered in Philadelphia, PA. For additional information, please visit www.imvax.com.

Contacts

Data & News supplied by www.cloudquote.io
Stock quotes supplied by Barchart
Quotes delayed at least 20 minutes.
By accessing this page, you agree to the following
Privacy Policy and Terms and Conditions.
 
 
Photos copyright by Jay Graham Photographer
Copyright © 2010-2020 Sausalito.com & California Media Partners, LLC. All rights reserved.